Note 4
Finsler Manifold and Distance
1
Banach space     E
Ck manifold       M
Point of M     p
Banach space     TxM
Norm of TxM     ||  ||x
Finsler metric is defined by the next.
(i) Topology by ||  ||x is equal to topology by norm of Banach space.
(ii) Tangent vector bundle     T (M)
Point     p∈M
Coordinate neighborhood of p     (Uα, α),  α : Uα→E
Ψα : Uα×E → π-1(Uα) ⊂T (M)
||| v |||x : = ||Ψα (x, v)||x , x∈Uα , v∈E
C > 0
1/C ||| v |||p ≤ ||| v |||x ≤C ||| v |||p ,  x∈Uα , v∈E
2
Banach manifold M that has Finsler metric     Finsler manifold M
Longitude of M     L (σ) : = ∫ba ||σ’(t)||dt
p, q∈M
Distance    ρ ( p, q ) : = inf { L (σ) }
Distance space     ( M, ρ )
When ( M, ρ ) is complete distance space, Finsler manifold is called complete.
3
Finsler Ck manifold     M
Ck function over M     f : M → R
Condition (C) is defined by the next.
(i) Subset of M     S
f is boundary over S.
infS ||df || = 0
Closure of S     S-
df = 0 at point p of S- 
4
Complete Finsler C2 manifold     M 
Ck class function     f : M → R satisfies condition ( C ).
Theorem
Connected component of M     M0
When f is boundary from below, f has minimum value at M0.
5
1 > m/p , m = dim M
Banach space     L1,p ( M, RN )
C∞ manifold     L1,p ( M, N )
Distance of L1,p ( M, RN )     ρ0
ρ0 ( u, v ) = || u – v ||1,p , u, v ∈ L1,p ( M, RN )
Proposition
Finsler manifold (L1,p ( M, N ) , ||  ||1,p ) is complete.
[Note]
Word is expressed by closed manifold in Banach space.
Distance is expressed by Finsler metric.
[References]
To be continued
Tokyo November 7, 2008
Postscript
[Reference November 30, 2008]
[Reference November 30, 2008]
No comments:
Post a Comment