Friday 19 July 2013

Homological Mirror Symmetry Conjecture by KONTSEVICH​

Symplectic Language Theory 
TANAKA Akio 
     
Note6 
Homological Mirror Symmetry Conjecture by KONTSEVICH
1
R       Commutative ring over C
C       R module that has degree
(ΠC)k = Ck+1
BC     Free coassociative coalgebra
EC     Free coassociative cocommutative coalgebra
BkΠC  BΠC that has number tensor product
EkΠC  EΠC that has k number tensor product
mk : BkΠC → ΠC
lk   : EkΠC → ΠC
2                         Coderivative
A-algebra             = 0 at (BΠCmk) (k>0)
Weak A-algebra     = 0 at (BΠC, mk) (k≥0)
L-algebra             = 0 at (EΠCmk) (k>0) 
Weak L-algebra     = 0 at (EΠC,  mk) (k≥0) 
 
3 
M(C)                     Complex structure's moduli space over compact manifold c     
Unobstructed         Weak A-algebra that satisfies M(C    
M       Symplectic manifold
M   
          Complex manifold that is mirror of M
L        Lagrangian submanifold of M that Weak A-algebra  is unobstructed            
FL      Object of M  's analitic coherent sheaf's category
(Conjecture)
For L there exists FLFL's infinite small transformation's moduli space is coefficient to M(L).  
5
[b]     Element of M(L)
[b] defines A-algebra.
[b] defines chain complex's boundary map m1b
Cohomologyy of m1 b is called Floer cohomology.
Floer cohomology is expressed by HF((L, b), (Lb)) 
6 (Impression)
Word is seemed as L.
For L there exist language FL and M(L).
Mirror theory on language is supposed by the existence of FL and M(L).





<References>
Mirror Theory papers in early stage of Sekinan Linguistic Field

No comments:

Post a Comment