Symplectic Language Theory 
TANAKA Akio 
     
Note 1 
Symplectic Topological Existence Theorem
[Theorem]
(Eliashberg)
Symplectic homeomorphism  
 is C0 convergent to differential 
homeomorphism 
.
Under the upper condition, φ is symplectic homeomorphism.
[Note]
1
For language's understandability, differential homeomorphic C0 convergence is related with 
the finiteness and infinity of language. 
2
For the finiteness and infinity of language, next theorem is eficient to solve the problem.
(Tomita's fundamental theorem)
H       Hilbert space        
B(H)  Banach space B(H, H)
N       B(H)'s *subalgebra that contains identity operator and closes for τuw topology
J        Conjugate linear equidistance operator
Δ       Unbounded positive self-adjoint operator
Δit     τs-continuous 1 parameter unitary group
(1) 
(2) 
(Borchers' theorem 1992)
The theorem is deeply connected with Tomita's theorem.
[Impression]
Symplectic geometric structure is seemed to be solvable for language's understandability that 
simultaneously connotes finiteness and infinity within. 
[References]
<Topological approach>
#1 
Topological Approach
Topological Approach
<Language's understandability>
#2 
Deep Fissure between Word and Sentence
Deep Fissure between Word and Sentence
#3 
Finiteness in Infinity on Language
Finiteness in Infinity on Language
<Related theorems>
#4 
Tomita's Fundamental Theorem
Tomita's Fundamental Theorem
#5 
Borchers' Theorem
Borchers' Theorem
<Related twitter site>
#6 
sekinanlu
sekinanlu
To be continued
Tokyo February 27, 2009
Sekinan Research Field of languageSource:
No comments:
Post a Comment